
VPC Peering
 By Chisom Uketui

Introducing Today's Project!

What is Amazon VPC?
Amazon Virtual Private Cloud (VPC) is a service that lets you create a logically isolated,

customizable network within the AWS cloud. It functions as your private data center in the

cloud, providing control over the network's virtual environment.

How I used Amazon VPC in this project

I used VPC today to set up a multi-VPC architecture (setting up 2 VPCs), created a peering

connection between them, and updated my security groups to run a successful connectivity

test to validate my VPC peering connection setup.

One thing I didn't expect in this project was...
I didn't expect to need a public IPv4 IP address for Instance Connect to work.

Also, I didn’t expect that Elastic IPs can assign public IPv4 addresses to resources.

This project took me...

This project took me about an hour to complete.

Below is an overview of what I will be doing in this project.

In the first part of my project...

Step 1 – Set up my VPC

In this step, I am going to create 2 VPCs using the VPC resource map, which is a fast and easier

way to create VPCs in AWS.

VPC 2 using a di�erent name tag and CIDR block.

Step 2 – Create a Peering Connection
Here, I am setting up a VPC peering connection, which is a VPC component designed to

directly connect two VPCs together.

A VPC peering connection is a direct connection between two VPCs.

A peering connection lets VPCs and their resources route tra�c between them using their

private IP addresses. This means data can now be transferred between VPCs without going

through the public internet.

VPCs would use peering connections to address specific networking needs in cloud

environments where VPCs need to share resources, exchange data, or collaborate without

exposing tra�c to the public internet.

Without a peering connection, data transfers between VPCs would use resources' public

address - meaning VPCs have to communicate over the public internet.

In VPC peering, the Requester is the VPC that initiates a peering connection. As the requester,

they will be sending the other VPC an invitation to connect!

The Accepter is the VPC that receives a peering connection request! The Accepter can either

accept or decline the invitation. This means the peering connection isn't actually made until

the other VPC also agrees to it!

Step 3 – Update Route Tables
In this step, I am going to update the route tables to set up a way for tra�c coming from VPC

1 to get to VPC 2 and vice versa.

Even if my peering connection has been accepted, tra�c in VPC 1 won't know how to get to

resources in VPC 2 without a route in my route table! I need to set up a route that directs

tra�c bound for VPC 2 to the peering connection I've set up.

My VPCs' route tables need to be updated because the default route table doesn’t have a

route using the peering connection yet; this needs to be set up so that resources can be

directed to the peering connection when trying to reach the other VPC.

My VPCs' new routes have a destination of the other VPC's CIDR block. The routes' target was

the peering connection I set up.

Step 4 – Launch EC2 Instances
I am launching EC2 instances in each of the VPCs (VPC 1 and VPC 2) so that I can directly

connect with my instances later and test my VPC connection.

Multi-VPC Architecture

I started my project by launching two VPCs - they have unique CIDR blocks, and they each

have 1 public subnet.

The CIDR blocks for VPCs 1 and 2 are 10.1.0.0/16 and 10.2.0.0/16, respectively. They have to

be unique because once you set up a VPC peering connection, route tables need unique

addresses for correct routing across VPCs.

I also launched 2 EC2 instances
I didn’t set up key pairs for these EC2 instances as I’m using EC2 Instance Connect to directly

connect to my EC2 instance. When using this connection type to EC2, AWS actually manages

a key pair for us! We don’t need to manage key pairs ourselves.

In the second part of my project...

Step 5 – Use EC2 Instance Connect

In this step, I will use EC2 Instance Connect to connect to my first EC2 instance.

I need to do this as I will be using this EC2 instance for connectivity tests later in this project.

Oooooop!! An error!

I ran into this error because while creating my instance I disabled ‘Auto assign public IP’

botton. If you want to connect to your instance over EC2 Instance Connect, then your

instance must have a public IP address and be in a public subnet. This is because using EC2

Instance Connect connects to your server over the internet by default.

To resolve this error, I set up Elastic IP addresses. These are static, public IPv4 IPs provided by

AWS to enable your resources to communicate over the internet. Unlike dynamically assigned

public IP addresses, Elastic IPs are persistent.

Associating an Elastic IP address resolved the error because it gives my EC2 instance a public

IP address, fulfilling the requirement for Instance Connect to work.

Nice 🙂 My EC2 now has a public IPV4 address

Step 6 – Connect to EC2 Instance 1

I am re-attempting my connection to instance - Chisom VPC 1 and resolving another error

preventing us from using Instance Connect to directly connect to my EC2 instance.

Failed to connect to my instance again 😀

Let’s trouble shoot!

Found it!

I am trying to access Instance - VPC 1 using SSH through EC2 Instance Connect, which is

trying to connect to my instance over the internet.

My default security group only allows inbound tra�c from within the VPC, so tra�c from the

internet is being cut o�!

The default security group for a new VPC does not allow incoming tra�c from outside of the

VPC.

I have to allow inbound SSH tra�c on port 22!

Successfully connected!

Step 7 – Test VPC Peering
In this step, I’m going to get Instance VPC1 to attempt a direct connection to Instance VPC2

to validate my peering connection is set up properly. To test VPC peering, I ran the command

ping 10.2.xxxx (i.e. private IPv4 address of the other EC2 instance in VPC 2).

A successful ping test would validate my VPC peering connection because this ping test will

not get any replies if the peering connection did not successfully connect the 2 VPCs.

This single line indicates that my Instance - VPC 1 has sent out a ping message... and that's

about it.

Usually, when you ping another computer successfully, you should see several replies back

instantly. Each reply tells you how long it took for the message to go to the Instance -VPC 2

and come back.

If you don't get any replies (like my situation right now), or if the replies stop suddenly, it's

usually a sign that there's a problem with the connection.

To fix this, I had to update my second EC2 instance's security group because it was not letting

in ICMP tra�c, which is a tra�c type of a ping message. I added a new rule that allows ICMP

tra�c coming in from any resource in VPC 2.

Running the ping command once again gave me my desired output!

